AstroRad è il software utilizzato per il conteggio dei raggi cosmici nei rivelatori AMD5 collegati in rete al progetto ADA. In questa ultima versione sono stati corrette alcune imperfezioni e ripristinato un pannello già presente in una delle precedenti versioni (401se) che genera parole, lettere e quindi frasi casuali al passaggio dei raggi cosmici. Avendo sempre come punto focale la didattica, nella sesta versione del programma è stata aggiunta anche una scheda con la quale il progressivo passaggio dei raggi cosmici attiva il calcolo di pi greco col metodo di Monte Carlo.
Schermata del pannello "WORDS FROM SPACE"
Il metodo di Monte Carlo può essere presentato agli studenti durante l'ultimo anno della secondaria di secondo grado, in quanto è la base di molti software di modellazione matematica che permettono di trovare soluzioni a complessi problemi reali, attraverso metodi stocastici; un classico esempio è il calcolo di pi-greco.
Tipicamente la dimostrazione consiste nel disegnare un cerchio (di raggio = 1) centrato nell'origine e inscritto in un quadrato di lato doppio del raggio. In AstroRad il cerchio ha raggio R = 1, ma è centrato sulle coordinate x=1 e y=1 il quadrato ha lato L = 2.

Cerchio di raggio = 1 centrato in 1,1 e quadrato di lato = 2
In questo consueto esempio lanciando delle palline a caso, queste potranno cadere nell'area quadrata, all'interno, oppure all'esterno del cerchio. La probabilità che una pallina possa cadere nel cerchio è data da: (casi favorevoli)/(casi possibili) ovvero: (area del cerchio)/(area del quadrato). Poichè il cerchio ha raggio unitario, la probabilità sarà pari a π/4.
La probabilità per un numero "n" di palline lanciate, di cadere nel cerchio sarà Pn ≃ π*n/4, se il numero totale di palline lanciate "n" è molto grande, e se chiamiamo "m" proprio quelle cadute nel cerchio: m ≃ π*n/4, ne segue che π ≃ (m/n)*4. Questo è tanto più vero quanto più il numero di palline lanciate "n" tende all'infinito.
AstroRad normalmente registra il conteggio dei raggi cosmici, inoltre ogni volta che arriva una particella elementare vengono attivate diverse funzioni. Nella scheda per il calcolo di pi greco, la particella genera le coordinate x e y casuali (entro i valori 0-2, sia per x, sia per y) come una pallina lanciata, le coordinate cadranno sicuramente all'interno del quadrato, ma potranno cadere casualmente dentro, oppure fuori dal cerchio.
Per sapere se le coordinate della pallina (o meglio chiamiamola particella) cadono all'interno del cerchio si considera l'equazione del cerchio: R^2 = (x-h)^2+(y-k)^2 (dove h e k sono le coordinate del centro). Siccome R=1, se Sqr[(x-h)^2+(y-k)^2] ≤ 1 la "particella" sarà caduta all'interno del cerchio e in questo caso verrà incrementato il valore di m, altrimenti verrà incrementato il valore di n-m (l'area esterna al cerchio che comunque non viene considerata ai fini del calcolo).
AstroRad utilizza un codice che al passaggio di una particella attiva un loop di un secondo, in questo lasso di tempo:
-Genera coordinate random per x
-Genera coordinate random per y
-Controlla se le coordinate sono all'interno del cerchio
-Conta "n" "lanci" e "m" "eventi" e applica la funzione di probabilità.
Il loop è sufficientemente lungo per far apprezzare visivamente ciò che avviene all'arrivo di ogni raggio cosmico.

La scheda per il calcolo di Pi greco in AstroRad.
Il metodo di Monte Carlo applicato con AstroRad funziona meravigliosamente bene e in genere il valore 3,1415...si raggiunge nel giro di qualche migliaio di particelle contate, con il rivelatore di muoni AMD5 sono necessari un paio di giorni di conteggio.
Questo sito non è stato istituito a scopo di lucro, le minime pubblicità che appaiono sono poste nel tentativo di autofinanziare e mantenere attivo il dominio astroparticelle.it, se in qualche modo i contenuti vi sembrano utili e se volete aiutarci a mantenerlo attivo potete donare un piccolo contributo, anche un solo euro può essere utile.
Newsletter 21 21.12.2025
Da oggi, nell'area dedicata è disponibile la nuova newsletter:
Gli effetti della tempesta solare sulla rete ADA 15.11.2025
L'undici novembre è stata osservata un'eruzione solare molto potente, di classe X5.1, a cui ha fatto seguito, meno di un'ora dopo, l'osservazione di un CME. Sulla Terra il picco del flusso di protoni e l'indice di perturbazione geomagnetica (kp), hanno raggiunto il massimo il 12 novembre e nella maggior parte dei nostri rivelatori si è potuta notare una sensibile diminuzione nel flusso dei raggi cosmici galattici; questo meccanismo è conosciuto come effetto Forbush...
I Raggi Cosmici possono spiegare la formazione dei pianeti rocciosi 16.01.2025
Una questione chiave in astronomia è quanto siano onnipresenti i pianeti rocciosi simili alla Terra. La formazione di pianeti terrestri nel nostro Sistema Solare è probabilmente stata fortemente influenzata dal calore di decadimento radioattivo di radionuclidi a vita breve (SLR), in particolare 26Al (alluminio-26), probabilmente emessi da supernovae vicine. Tuttavia, i modelli attuali faticano a riprodurre l'abbondanza di SLR desunta dall'analisi dei meteoriti senza distruggere il disco protosolare. Un nuovo studio propone il meccanismo di "immersione", in cui la nucleosintesi dei raggi cosmici in un'onda d'urto di supernova riproduce le abbondanze stimate di SLR a una distanza di supernova superiore a quella prevista dal meccanismo di "iniezione" classico da supernove vicine. A supporto di questo scenario, si stima che le stelle di massa solare negli ammassi stellari sperimentino tipicamente almeno una di queste supernovae entro 1 parsec. Ciò suggerisce che le abbondanze di SLR simili a quelle del Sistema Solare e la formazione di pianeti terrestri siano più comuni di quanto si pensasse in precedenza...

Fonte: Science Advances
Accedi | Registrati