APi Detectors

home
@-mail
print
Login
Astroparticelle - NewsAPi News
logo

Cosmic Rays Detector AMD 16

Rivelatore di muoni e sciami elettrofotonici nuovo prototipo

Questo nuovo rivelatore è stato concepito per fare misure di assorbimento sott'acqua, un esperimento che abbiamo in programma di fare da diversi anni.

 

AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16.

 

Lo strumento utilizza 4 sensori GMT o tubi Geiger-Muller, due tubi sovietici ultra collaudati, tipo SBM19 e due tubi di produzione cinese tipo J305. Le dimensioni fisiche di questi tubi sono praticamente identiche, mentre le caratteristiche elettriche risultano molto differenti, differente anche i livelli di polarizzazione e di sensibilità.



Setup dello strumento.


Per il fatto della differenza elettrica tra i sensori, il setup dello strumento è stato particolarmente lungo e complesso. L'intenzione era di produrre due canali di misura principali, uno per rivelare i muoni e uno per rivelare le cascate elettrofotoniche (raggi gamma ed elettroni) nella materia e prodotte da diverse interazioni "terziarie". Lo scopo è stato raggiunto utilizzando due tubi in posizione verticale con il segnale di coincidenza tra di essi per la misura dei muoni; mentre per la misura degli sciami gamma si considera la coincidenza di tre GMT, quello superiore insieme al segnale dei due GMT laterali. Questa configurazione a "lambda" deriva dal tipo di misure eseguito dai ricercatori come Bruno Rossi con Giuseppe Occhialini e Patrick Blackett e anche Hartland Snyder e altri, per rivelare sciami secondari di particelle nella materia prodotti per interazione coi raggi cosmici.


AMD16 cosmic rays and gamma detector
Rivelatore di raggi cosmici AMD16 in funzione.


I dati sono registrati da un data logger Arduino su scheda SD per un totale di 6 canali (4 GMT = gamma e particelle cariche, Muoni e sciami gamma) Le prove iniziali sono molto buone e promettenti. Il rate di muoni è quello atteso per strumenti di questo tipo, mentre per la coincidenza tra tre GMT non abbiamo precedenti dati su cui fare confronti. La comparazione tra due misure, una a cielo libero, e una posizionando una lastra di pochi mm di piombo sopra al rivelatore conferma la potenzialità di misurare gli sciami di particelle (prevalentemente elettroni e raggi gamma) prodotte all'interno della materia.

 


Differenza tra la densità di muoni, con e senza lastra di piombo.
Con la lastra di piombo si nota una sensibile diminuzione nelle frequenze maggiori.


Lo scopo dell'esperimento che sarà prodotto sott'acqua sarà quello di verificare l'assorbimento stesso della radiazione cosmica nell'acqua e la possibile produzione di sciami elettrofotonici nei primi centimetri o decine di centimetri sotto la superficie dell'acqua.


Differenza tra la densità di eventi shower, con e senza lastra di piombo.
Con la lastra di piombo si nota un sostanziale aumento nelle frequenze maggiori.


Sott’acqua i muoni hanno un potere di penetrazione enorme quindi per basse profondità vengono praticamente attenuati solo quelli a bassa energia. Adroni ed elettroni vengono frenati nei primi cm di acqua, perciò non sono rilevabili. I raggi gamma possono penetrare parecchie decine di cm a seconda dell’energia. La relazione di assorbimento dei fotoni nella materia è conosciuta come legge di Lambert. L’intensità è ridotta in base a: I= I0 * e^-α*d dove alfa è il coefficiente lineare di attenuazione o assorbimento (1/cm) d è distanza (in cm), alfa a sua volta è: α=µ*ρ, dove µ = coefficiente di massa e ρ è la densità[1]. µ (=α/ρ) è chiamato coefficiente di attenuazione di massa e si misura in cm2/g (si ricava da tabelle). La relazione si può scrivere come I=I0*e^-µ*d*ρ, sostituendo d*ρ con X che è la profondità di interazione (o interaction depth - g/cm2) si ha: I=I0*e^-µ*X.

Al momento sono in fase alcune simulazioni ed esperimenti per valutare le potenzialità di questo piccolo ma efficiente strumento.

[1] L'utilizzo delle lettere greche per indicare queste quantità non è uniforme tra i vari autori e libri specialistici, ad esempio Domenico Pacini utilizzava lambda minuscolo in vece di alfa, probabilmente per indicare l’interation mean free path (la distanza media in cm percorsa da una particella tra una interazione e l’altra).

M.A.

 


To the top

Astroparticelle - schegge per lo sviluppo della conoscenza...


⚛ In primo piano

L'Universo Nascosto - Il nuovo libro di Alessandro De Angelis 21.03.2024

Con la scoperta dei raggi cosmici, ha avuto inizio una delle imprese intellettuali più emozionanti della storia della scienza. Queste particelle ad altissima energia segnalano la presenza di enormi acceleratori all’opera nello spazio: resti di supernove e buchi neri supermassicci, fenomeni tra i più violenti nell’Universo. Attraverso un’esposizione rigorosa e appassionata, Alessandro De Angelis ripercorre la storia di questa impresa straordinaria che ha già messo piede nel futuro.
La citazione dei vari esperimenti esistenti e in particolare del progetto ADA è un gradito cadeau che onora tutte le persone che da anni sono coinvolte in tali attività...

cosmic rays books



Muon Monitor in real time



News dal Mondo


Esisteremmo se il campo magnetico terrestre non fosse crollato 500 milioni di anni fa? 11.05.2024

Il campo magnetico terrestre è vitale per la vita, senza di esso la radiazione cosmica e solare sterilizzerebbero il pianeta. Ma un nuovo studio suggerisce che non saremmo affatto qui se il campo magnetico non fosse crollato quasi completamente 600 milioni di anni fa, in corrispondenza del periodo edicarano. Solitamente l'indebolimento del campo magnetico terrestre è associato alle grandi estinzioni. Tuttavia un nuovo studio dimostra che un forte calo del campo magnetico sia avvenuto poco prima che la vita complessa esplodesse. Un campo magnetico più debole significa che una maggiore radiazione cosmica ionizzante raggiunge più in profondità l’atmosfera terrestre ed è già stato dimostrato che ciò potrebbe aver aiutato le forme di vita antenate di tutti gli animali ad evolversi...

raggi cosmici

Fonte: Nature, NewAtlas


Una sfida quantistica da risolvere sottoterra 30.04.2024

La radiazione dallo spazio rappresenta una sfida per i computer quantistici poiché il loro tempo di calcolo viene limitato dai raggi cosmici. I ricercatori della Chalmers University of Technology, in Svezia, e dell’Università di Waterloo in Canada, stanno ora esplorando le profondità sotterranee alla ricerca di una soluzione a questo problema. Una causa di errori nei computer quantistici scoperta di recente è la radiazione cosmica. Le particelle altamente cariche provenienti dallo spazio disturbano i qubit sensibili e fanno perdere loro lo stato quantico, nonché la capacità di continuare un calcolo. Ma ora i ricercatori quantistici provenienti da Svezia e Canada uniranno le forze per trovare una soluzione al problema, nella camera bianca più profonda del mondo SNOLAB, due chilometri sotto terra.
SNOLAB mantiene il flusso di muoni più basso al mondo e dispone di avanzate capacità di test criogenici, che lo rendono un luogo ideale per condurre preziose ricerche sulle tecnologie quantistiche...

cosmic rays

Fonte: PHYS.org



☄ Il libro: Costruire un rivelatore di muoni a GMT

Il telescopio per i raggi cosmici

In tutte le librerie online! - una guida per chi vuole cimentarsi nella costruzione di un rivelatore di particelle elementari e toccare con mano la fisica dei raggi cosmici e l’astronomia, due campi distinti e unificati dalla fisica delle astroparticelle...

Libro


Area riservata

Accedi | Registrati

x

Iscriviti

Per ricevere aggiornamenti periodici inviaci la tua email.

oppure registrati

Questo modulo serve solo come iscrizione alle newsletter, per accedere all'area riservata è necessario registrarsi.

INFN

CERN LHCF

supernova alert

EOS

supernova alert